A Hybrid Method for Improvement of Evolutionary Computation
نویسندگان
چکیده
منابع مشابه
A New Method for Geolocating of Radiation Sources Based on Evolutionary Computation of TDOA Equations
In this article a new method is introduced for geolocating of signal emitters which is based on evolutionary computation (EC) concept. In the proposed method two well-known members of EC techniques including Bees Algorithm (BA) and Genetic Algorithm (GA), are utilized to estimate the positions of emitters by optimizing the hyperbola equations which have been resulted from Time Difference of Arr...
متن کاملHybrid Evolutionary Computation for Continuous Optimization
Hybrid optimization algorithms have gained popularity as it has become apparent there cannot be a universal optimization strategy which is globally more beneficial than any other. Despite their popularity, hybridization frameworks require more detailed categorization regarding: the nature of the problem domain, the constituent algorithms, the coupling schema and the intended area of application...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولA Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization
In this paper, we propose a hybrid master/slave approach to optimization problems on the basis of estimation of distribution algorithms (EDAs) and genetic algorithms (GAs). The master process estimates the probability distribution of the search space on the basis of the non-dependency model at each iteration and sends probability vectors to the slaves. The slaves use the vectors to generate a n...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2002
ISSN: 1976-9172
DOI: 10.5391/jkiis.2002.12.4.317